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Motivation, problem setting
S

Biden administration plan seeks
elimination of transportation emissions

calls for a transition to electric vehicles and more walkable neighborhoods by 2050

A 40-ton Mercedes-Benz e-truck just drove
1,000 km with only one stop to charge

& Michelle Lewis | Oct 5 2023 - 10:48 am PT | [ 66 Comments

LOGISTICS REPORT

California’s Electric-Truck Drive Draws
Startups Building Charging Networks

| aggressive emissions-slashing mandate means thousands of
arging sites are needed in the coming years

Biden administration plan calls for $5
billion network of electric-vehicle
chargers along interstates pud Berger (Follow]

y 29, 2023 7:00 am ET

Grants included in the infrastructure law will help states build a charging network designed to reach highways in almost
every corner of the country

By lan Duncan
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[ New routing algorithms for electrified logistics ]
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Problem description
T

- Vehicle routing problem with electric vehicles,
in continuous time and charge

Multiple depots
) O Customers
Multiple customers B Depots
. . . Charging
Multiple charging stations Seations
@)
]
- Assumptions: ) o
No time windows B
Linear charging dynamics
[Possibly non-linear depletion rates] %
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Contributions
5 5

[ Electric vehicle routing: subpath-based decomposition algorithm ]

Electric vehicle routing: Semi-infinite set-partitioning

Modeling

formulation with continuous time and continuous charge

* Subpath-based decomposition algorithm for
column generation subproblem

Optimization * Acceleration strategy via adaptive route relaxations
to obtain elementary paths

* Cutting planes to strengthen linear relaxation

Computational Significantly outperforms path-based benchmark, and
results scales to realistic problem instances

| BetaslIBinLIdal Benefits over “business-as-usual” routing operations
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Semi-finite set-partitioning model
S

min Z cP 2P

(minimize total cost of paths)

pEP
such that Z ofP =vi™  VjeVp (cachdepot] starts with ijtart vehicles)
pEP
Z By2F > Vg™ VjieVp  (each depotj ends with at least vftart vehicles)
pEP
Z VWP =1 VieVe  (each customer served once)
pEP
2P € {0,1} VpeP
+ Set-partitioning formulation with path-based variables zP
- Infinitely many variables
- Discrete routing and timing decisions (as in traditional VRP)
- Continuous charging decisions (new to E-VRP)
4
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Column generation
5

Restricted Master Problem dual values K, f1, v
min Z cP 2P
pEP’ <
such that Z a? 2P = vjftart VjieVp K] Subproblem
pEP’
min { & := c? — Kgtart(p) — Mend(p) — Py
Y g >ud VieVp [y peP tart(p) " Hend(p) g;c k }
pEP’
» AP =1 VieVe |,
pEP’ paths not in P’
2? € {0,1} VpeP

|
Traditionally: solves an E-RCSPP by :
dynamic programming :
I
|
|

* Q: How to guarantee finite termination?
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____[— Sp—— Lo |
:Subpath:Lbased decomposition | from depot/charging station |
|

to depot/charging station :
in the pricing problem

Master problem variables

®
= Path Subpath

c

g

> 5| Column generation CG for extended
g ¥ e.g. [1] for EVRPTW formulations [4]
IS

S

& This work CG on extended
%0 é i- i _d;_ﬁ;\;,_czuz ;,C;J ) ": formulations,

'® 2| ! build paths from ! e.g. [2] for PDP,
;i_': 7 subpaths? : [3] for ride-sharing

[1] Desaulniers, G., Errico, F, Irnich, S., & Schneider, M. (2016). Exact Algorithms for Electric Vehicle-Routing Problems
with Time Windows. Operations Research, 64(6), 1388—1405. https://doi.org/10.1287 /opre.2016.1535

[2] Alyasiry, A. M., Forbes, M., & Bulmer, M. (2019). An Exact Algorithm for the Pickup and Delivery Problem with Time
Windows and Last-in-First-out Loading. Transportation Science, 53(6), 1695—1705. https://doi.org/10.1287 /trsc.2019.0905
[3] Zhang, W., Jacquillat, A., Wang, K., & Wang, S. (2022). Routing Optimization with Vehicle-Customer Coordination.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4208397

[4] Sadykov, R., & Vanderbeck, F (2013). Column generation for extended formulations. EURO Journal on Computational
Optimization, 1(1), 81-115. https://doi.org/10.1007/s13675-013-0009-9
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Key idea: generate-and-stitch
—

(- ) ﬁ
Step 1: Generate subpaths
* Label-setting, with charge and time taken as ? ?
domination criteria
\ ‘ y, %
/Step 2: Stitch subpaths into paths \

* A subpath valid at time O is still valid at time ¢
with the same reduced cost

* Charging action between subpaths is the
minimum possible

* Reduced cost of path =
\ r.c. of subpaths + r.c. of charging actions /

[ Theorem: with this, CG finitely converges to LP optimum of EVRP ]
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Comparison to benchmark
e

R Signiﬁcant SpCCdU.pS against % reduction in time taken: our method against benchmark

path-based benchmark ‘o i
- Stronger improvement with:
- Higher customer density 5 50
~ longer subpaths s
- Longer time horizon -
~ mote Subpaths per path 1.5 2.0 2.5 3.0 3.5 4.0 o

Customer density
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° 10
Computational
10"
results 3
> 1c°
E i acce:erann ‘et
- Additional algorithmic £
o 10!
elements ©
- Adaptive ng-route: o2 |
Acceleration strategy for o e ” . - "
finding the LP relaxation 104 # customers
Of e]‘ementary paths 7 = Eg + acceleraton [T~~~ —~—~—~—~—~—~—~"~—~"—~"~"—~"—~"~"~""~""~""~""~—"">—>7———
[ CG + acceleration + cuts

- Cutting-plane algorithm
to tighten LP relaxation

- Small optimality gaps in

Time taken (s)

manageable runtimes

Lo, Jacquillat — Electric Vehicle Routing 20 24 28 32 36 20
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The benefits of optimization
-

- Improvement compared
% reduction in cost: our method against business-as-usual

to business-as-usual
solution:

- Solve a VRP w/o charge

- Then optimize charging
stations with fixed routes

Time horizon

- Benetfit of jointly - 15%  -13% -14%
optimizing charging and

2.5 3.0 3.5 4.0 4.5 5.0
Customer density

routing decisions
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Contributions
5 5

[ Electric vehicle routing: subpath-based decomposition algorithm ]

Electric vehicle routing: Semi-infinite set-partitioning
formulation with continuous time and continuous charge

Modeling

* Subpath-based decomposition algorithm for
column generation subproblem

Optimization * Acceleration strategy via adaptive route relaxations
to obtain elementary paths

* Cutting planes to strengthen linear relaxation

Computational Significantly outperforms path-based benchmark,
results and scales to realistic problem instances

ILZTVilZIBIn LI Benefits over separately optimizing routing and charging
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- Additional slides
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Comparison to benchmark

- Benchmark time taken against
Desaulniers (2016)!:
generating paths

- Improvement over benchmark
in all settings and relaxations

- Bigger improvement with:

- Greater customer density
~ longer subpaths

.+ Greater time hotizon
~ more subpaths per path

Intuition: solving 1 DP with large* state space >
solving m DPs with smaller* state space

[1] Desaulniers, G., Errico, E, Irnich, S., & Schneider, M. (2016). Exact
Algorithms for Electric Vehicle-Routing Problems with Time Windows.
Operations Research, 64(6), 1388—1405.

https://doi.org/10.1287 /opre.2016.1535

% reduction in time taken: our method against benchmark

No elementarity

w >
) o

w
o

Time horizon

1.5 2.0 2.5 3.0 3.5 4.0
ng-route

w

-50

w

Time horizon

1.5 2.0 25 3.0 3.5 4.0
Elementary

w
)

W
o

Time horizon

n
3

-10C

1.5 2.0 25 3.0 3.5 4.0
Customer density
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Contributions
5 5

[ Electric vehicle routing: subpath-based decomposition algorithm ]

Electric vehicle routing: semi-infinite set-partitioning
formulation with continuous time and continuous charge

Modeling

* Subpath-based decomposition algorithm for
column generation subproblem

Optimization * Acceleration strategy via adaptive route relaxations
to obtain elementary paths

* Cutting planes to strengthen linear relaxation

Computational Significantly outperforms path-based benchmark,
results and scales to realistic problem instances

ILZTVilZIBIn LI Benefits over separately optimizing routing and charging
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Summary
S

[ Electric vehicle routing: subpath-based decomposition algorithm ]

Electric vehicle routing: semi-infinite set-partitioning
formulation with continuous time and continuous charge

Modeling

!

Column
. elementary
generation

paths?

Optimization

Integral

solution?

Computational

results

Grow ng-route neighborhoods,
remove invalid paths

}

Find violated cuts; add cuts

Significantly outperforms path-based benchmark, and
scales to realistic problem instances

|BeTiterI B EIdal Benefits over separately optimizing routing and charging

Lo, Jacquillat — Electric Vehicle Routing
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The elementarity constraint

N
- The E-RCSPP is very expensive!

- One binary label for each customer, denoting if customer I visited

- Relaxations of the subproblem - looser definition of paths
- No elementarity

- ng-route relaxationl!:

Each customer 1 has a neighborhood of nodesi € N; € N¢

Between two visits to customer i, must visit customer j with i & N;

Each partial path visiting nodes iy, i4, ..., [ has an associated ng-set

H(P):[i,: i € ﬁ N, r=1,...,k—1}U{ik}.

s=r+1
Set inclusion of #g-sets is a domination criterion

[1] Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New Route Relaxation and Pricing Strategies for the Vehicle Routing 18
Problem. Operations Research, 59(5), 1269—1283.



ng-routes 1n generate-and-stitch

-9
- Traditionally: Forward labelling keeps track of forward ng-sets

H(P):[i,: i, € (E] N,r=1,..., k—l}U{ik}.

s=r+1

+ Backward labelling (in bi-directional label-setting!!l) tracks
backward 7g-sets

r—1
-(P) = {i,} U {i,: i, N, r=k+1,...,h}.

s=k

- Our method requires tracking both forward and backward 7g-
sets, since subpaths can be extended from the front and back

- Larger state space in the “generate” step

[1] Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New Route Relaxation and Pricing Strategies for the Vehicle Routing 19
Problem. Operations Research, 59(5), 1269—1283.



Acceleration: adaptive zg-routes

S
- Large ng-route neighborhoods = tight (and slow) relaxations

- Idea: start with a loose relaxation, tighten when necessaryl!

- Analog: cutting planes yielding [ Column generation ]._
nested relaxations

Non-
elementary
paths?
Proposition: This procedure ) e i
terminates finitely, with the Grow ng-route neighborhoods
solution to the LP relaxation of ) | i
EVRP with elementary routes Remove invalid routes
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Computational results
S

- Adaptive ng-route
procedure reaches the
objective of the
elementary relaxation
(in much less time)!

« Sometimes: no

integrality gap &

- Else: some integrality
gap remains

> Time for cuts!

Objective value

13

1.2

=
)

=
o

09

0-8 C 1 1 1 1 1 1
0 1 2 3 4 5 6

—@— CG iterations (adaptive ng-route)
—l— IP heuristic solution

Time taken (s)
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Subset-row cuts

. At most |n/k] routes visiting
at least k out of n customers!!

» Non-robust cuts which change
subproblem structure

- Limited-memory subset-row
cuts? include a memory
neighborhood for each cut

- Smaller state space

° \X/eaker cuts Fig. 2 Example illustrating the performance gain in the pricing when using Im-SRCs

[1] Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-Row Inequalities Applied to the Vehicle-

" Routing Problem with Time Windows. Operations Research, 56(2), 497-511. https://doi.org/10.1287 /opre.1070.0449
[2] Pecin, D., Pessoa, A., Poggi, M., & Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing. 22
Mathematical Programming Computation, 9(1), 61-100. https://doi.org/10.1007/s12532-016-0108-8
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Computational
results

- Cuts further close the
optimality gap at the
cost of more time

- IP solution obtained
typically optimal

- /m-SR3 cuts provides an
intermediate approach
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Optimality gap (%)

Time taken (s)

10° F

+ adaptive ng-route
+ adaptive ng-route + SR3 cuts
+ adaptive ng-route + ImSR3 cuts

24 28 32 36 40
# customers

[ CG
- | B CG
[ CG
I ec

+ adaptive ng-route
+ adaptive ng-route + SR3 cuts
+ adaptive ng-route + ImSR3 cuts
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24 28 32 36 40
# customers



