ind@) OPERATIONS
il RESEARCH
- CENTER

Electric Vehicle Routing:

Subpath-Based Decomposition

Sean Lo seanlo@mit.edu Alexandre Jacquillat alexjaco@mit.edu
MIT Operations Research Center, MIT Sloan School of Management,
Cambridge, MA Cambridge, MA

INFORMS Optimization Society Conference 2024
22 March 2024



mailto:seanlo@mit.edu
mailto:alexjacq@mit.edu

Background and motivation
e

Biden administration plan seeks
elimination of transportation emissions

calls for a transition to electric vehicles and more walkable neighborhoods by 2050

A 40-ton Mercedes-Benz e-truck just drove
1,000 km with only one stop to charge

& Michelle Lewis | Oct 5 2023 - 10:48 am PT | [ 66 Comments

LOGISTICS REPORT

California’s Electric-Truck Drive Draws
Startups Building Charging Networks

| aggressive emissions-slashing mandate means thousands of
arging sites are needed in the coming years

Biden administration plan calls for $5
billion network of electric-vehicle
chargers along interstates pud Berger (Follow]

y 29, 2023 7:00 am ET

Grants included in the infrastructure law will help states build a charging network designed to reach highways in almost
every corner of the country

By lan Duncan
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[ New routing algorithms for electrified logistics ]
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Contributions
5 5

[ Electric vehicle routing: subpath-based column generation algorithm ]

Semi-infinite formulation for electric vehicle routing:
discrete routing decisions, continuous charging decisions

Modeling

* Subpath-based decomposition: two-level label-setting
pricing algorithm for column generation subproblem

Optimization * Forward and backward domination criteria enabling
tighter relaxations: ng-relaxations & cutting planes

* Guarantees of exactness and finite convergence

Computational Significantly outperforms path-based benchmark,
results and scales to realistic problem instances

|ILZTVilZIBin LIl Benefits of integrated routing and charging optimization
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Electric Vehicle Routing Problem

O Customers
B Depots
Charging

Stations

7

- linear recharging costs:
nonlinear battery ging

charging for time T

consumption along arcs .
p & gains chatrge T, costs § + T
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Semi-infinite set-partitioning model
S

min Z 2P (minimize total cost of paths)

s.t. Z 1 (n&ars = 7) 2P =5V depots j (each depot j starts with ijtart vehicles)

pEP
Z 1(nfyg=7)z" >v"  V depots j (each depot j ends with at least vfnd vehicles)
pEP

Z’yf’ 2P =1 Y customers j (each customer served once)
peEP
2P el VpeP

+ Set-partitioning formulation with path-based variables zP

- Infinitely many variables
- Discrete routing and timing decisions (as in traditional VRP)

- Continuous charging decisions (new to E-VRP)
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Column generation

Restricted Master Problem

peP’
s.t. Z 1 (nfiars = J) 27 ="V depots j (K]
pEP’ <
Y 1(nf,=4)2">v™  Vdepotsj  [y]
peP’
Z et =1 V customers j [v]
pEP’
€Ly VpeP paths not in P’

dual values Kk, i, v

Pricing Problem

min {Cp =cl — Kstart(p) — Hend(p) — Z f)/zpl/i}

A 4

P
P 1€Veo
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Algorithmic challenges

1. How to solve the pricing problem etficiently?

NP-hard Elementary Resource-

Constrained Shortest Path structure min {ép 1= — Kgtart(p) — Hend(p) — 3 fyfl/i}
p

2. How to ensure finite convergence in column generation?

Infinitely many path-based variables: |[min ) ¢?2?

3. How to impose path elementarity?

Trade-off: relaxation strength vs. high-dimensional domination labels

4. How to eliminate fractional solutions?

Embedding limited-memory subset row inequalities | 27 € Z,
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Pricing problem in CG

- Finding paths of negative reduced cost via DP
+ Resource-Constrained Shortest Path Problem (RCSPP)!!

Extend partial paths Prune “dominated” paths
along edges using domination criteria
D(p) = (E(p), t(p), —b(p))
Challenges: reduced time (negative of)
1.  Grows exponentially with no. of customers cost charge
2.  How to determine charging time? —— Fxtra labelsl?l

[1] Irnich, S., & Desaulniers, G. (2005). Shortest Path Problems with Resource Constraints. In G. Desaulniers, J. Desrosiers, &

M. M. Solomon (Eds.), Column Generation (pp. 33—65). Springer US. https://doi.org/10.1007/0-387-25486-2 2

[2] Desaulniess, G., Errico, F, Irnich, S., & Schneider, M. (2006). Exact Algorithms for Electric Vehicle-Routing Problems with 7
Time Windows. Operations Research, 64(6), 1388—1405. https://doi.org/10.1287 /opre.2016.1535



https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1287/opre.2016.1535

Key idea: two-level label-setting
—

(Level 1: Generate subpaths s h %
* Label-setting, with domination criteria: ?
D(s) = (e(s), t(s), b(s)) ¢ y
g J

l

/Level 2: Extend paths p along subpaths S\
* A subpath valid at time O is still valid at time ¢
with the same reduced cost
* WLOG, the charging decision between
subpaths 1s the minimum possible
* Reduced cost of path =

\ r.c. of subpaths + cost of charging /
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A closer look at domination
S

Our work: Traditionallyl!l:
Def: S1 >L So if: L(Sl) < L(Sz) Def: P1 >L P2 if: L(pl) < L(pz)
D(s) = (e(s), t(s), b(s)) D) = (), tp), ~b(v))
reduced time  charge reduced time (negative of)
cost  taken  taken cost charge
S1 >L So P1 >L b2
si@ex.5:De pDs1Zz.pODs: P1Os > p2Ds
for any edge e for any path p tfor any subpath s

[ Rigorous and generalizable framework for domination criteria ]

[1] Irnich, S., & Desaulniers, G. (2005). Shortest Path Problems with Resource Constraints. In G. Desaulniers, J. Desrosiers, & 0
M. M. Solomon (Eds.), Column Generation (pp. 33—65). Springer US. https://doi.org/10.1007/0-387-25486-2 2
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Key results
S

Theorem 1: Two-level label-setting finds negative reduced-cost paths,
or certifies that none exists

Proof (sketch):

* Use properties e e e arising from domination criteria

Theorem 2: With two-level label-setting,
CG converges finitely to LP optimum of EVRP

Proof (sketch):

* Infinitely many paths, but finitely many subpath sequences

* Once a path 1s added to RMP, no other path with the same subpath sequence
will be added in future iterations
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Comparison to benchmark
e

% time reduction vs.
- Significant speedups against path-based benchmark

0
path-based benchmark ‘o
- Stronger improvement with:
3.5
- Higher customer density 50
~ longer subpaths £ 30
- Longer time horizon -
~ more subpaths per path 100
1.5 2.0 2.5 3.0 3.5 4.0
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Algorithmic challenges

1. How to solve the pricing problem etficiently?

NP-hard Elementary Resource-

Constrained Shortest Path structure min {ép 1= — Kgtart(p) — Hend(p) — 3 fyfl/i}
p

2. How to ensure finite convergence in column generation?

Infinitely many path-based variables: |[min ) ¢?2?

4. How to eliminate fractional solutions?

Embedding limited-memory subset row inequalities | 27 € Z,
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The elementarity constraint
-

- Ideally, each path serves each customer at most once! (elementarity)

- Affects the structure of the label-setting in the pricing problem:

Option 1: Option 2:

Ignore elementarity Enforce elementarity

One binary resource pet customerlt!l:
I—H

D(p) = (5(19), t(p), —b(p), 7{’,---,72)

== Computationally cheap! == FExpensive: NP-hard?

== Good LP solutions, but == Better [P solutions
bad IP solutions

[1] Beasley, . E., & Christofides, N. (1989). An algorithm for the resource constrained shortest path problem. Nemworks, 19(4), — ——
379-394. https://doi.org/10.1002/net.3230190402

[2] Dror, M. (1994). Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW. Operations 13
Research, 42(5), 977-978. https://doi.org/10.1287/opre.42.5.977



https://doi.org/10.1002/net.3230190402
https://doi.org/10.1287/opre.42.5.977

Adaptivel? ng-relaxations!!!

- onlil: .
ng-route relaxation'™: Nested ng-route relaxations
Interpolates between Start with a loose 7ng-relaxation,
no and full elementarity Extending partial tighten when necessaryl?l!

path updates ng-set

[ Column generation ]4—

Non-

elementary

paths?

Remove invalid routes

[ Grow ng-route neighborhoods, ]7

Customer [ has
neighborhood N;

Prop: This yields the solution
to the LLP relaxation of EVRP

with elementary routes

[1] Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New Route Relaxation and Pricing Strategies for the Vehicle Routing

Problem. Operations Research, 59(5), 1269—1283.

[2] Martinelli, R., Pecin, D., & Poggi, M. (2014). Efficient elementary and restricted non-elementary route pricing, Exropean 14
Journal of Operational Research, 239(1), 102—111. https://doi.org/10.1016/j.ejor.2014.05.005



https://doi.org/10.1016/j.ejor.2014.05.005

ng-routes in two-level label-setting

Traditionally:

- Forward ng-sets in label-setting
algorithms [1]

H(P):[i,: i, € (f] N, r:l,...,k—l}U{ik}.

s=r+1

- Backward ng-sets in bidirectional
label-setting algorithms [1]

r—1
H_I(P)={ik}u{i,: i, €N, r=k+1,...,h}.

Our work:

- Path domination criteria include
forward ng-set inclusions:

D(p) = (e(w), tp), ~b(®), {1G€NE)},)

. Subpéth domination criteria include
both forward and backward 7g-sets:

D(s) = (&(s), t(s), bs),
{1 en()}, {1 (el @)k)

s=k
Reason: need D(s) to satisfy:
< J pDs1 7. pDs
S1 7L S >
tfor any path p
[1] Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New Route Relaxation and Pricing Strategies for the Vehicle Routing 15

Problem. Operations Research, 59(5), 1269—1283.



Benefits of adaptive ng-relaxations
S

Adaptive ng-routes Full elementarity
1.00 f————————- ‘V;'W —-:7-——5-0"'*@'—"'—
O o @) — |
|
|
| | |
|
|
o 0.95¢+ | :
2> |
O ’ |
9 | |
o) |
o ’ |
o | |
— 0.90 o 20 customers :
0 - 24 customers |
—e - 28 customers |
—e - 32 customers :
—e - 36 customers |
0.85 | o —v— Adaptive ng-route :
. 1 m 1 1 1 |
1 ~ 10 100 1000 3600
No elementarity Time (s)
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Computational results

- Weak relaxation of baseline column generation algorithm

- Strong benefits from ng-relaxations and cutting planes

- Scales to realistic problem instances, with dozens of nodes

Optimality gap

100.0

50.0

20.0

10.0

5.0

2.0 -

Optimality gap (%)

1.0

0.5

0.2

ive ng-route + ImSR3 cuts

0.1
20 24 28 32 36 40

# customers

Time taken (s)

3600

1000

100

10

Computational times

20 24 28 32 36 40

# customers
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The benetits of optimization
—

- Business-as-usual solution: % cost reduction vs.
- Solve a VRP w/o charge business as usual

- Then optimize charging o
. . 5.0 -18%
stations with fixed routes

Time horizon
N
[6)]

4.0 B -11%  -15% -13% -14% -15%

- Significant improvements by
jointly optimizing charging

and routing decisions

25 3.0 3.5 4.0 4.5 5.0
Customer density

Benefits from large-scale optimization algorithms to support emerging
vehicle technologies and operating models toward sustainable logistics
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Conclusion
5

[ Electric vehicle routing: subpath-based column generation algorithm ]

Semi-infinite formulation for electric vehicle routing:
discrete routing decisions, continuous charging decisions

Modeling

* Subpath-based decomposition: two-level label-setting
pricing algorithm for column generation subproblem

Optimization * Forward and backward domination criteria enabling
tighter relaxations: ng-relaxations & cutting planes

* Guarantees of exactness and finite convergence

Computational Significantly outperforms path-based benchmark,
results and scales to realistic problem instances

|ILZTVilZIBin LIl Benefits of integrated routing and charging optimization
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- Additional slides
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Subset-row cuts
S

- Consider a cut defined by a subset S of customers:

- At most |n/k| routes visiting at least k out of n customersl!l
(Chvatal-Gomory cut of rank 1)

Sy e=isl= X |z | < |5

pEP i€S pEP €S

» Non-robust cuts which change subproblem structure (new duals)
« Track resource )jcg )/l-p (mod k) for each subset S
«  When resource hits 0, subtract dual from reduced cost

- Track Y ;esy; (mod k) and Zies]/ip (mod k) D(s) = ( | s )
for subpaths and paths respectively: (s) Y {ZZES % }ts
D(p) - ( * o {Zi657§)}5)

[1] Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-Row Inequalities Applied to the Vehicle-Routing 21
Problem with Time Windows. Operations Research, 56(2), 497-511. https://doi.org/10.1287 /opre.1070.0449




Limited-memory subset-row cuts
e

[1

- Limited-memory subset-row cuts linclude a

memory neighborhood tor each cut
- Smaller state space

- Weaker cuts

- Requires tracking forward and o ©
backward criteria

Fig. 2 Example illustrating the performance gain in the pricing when using Im-SRCs

[1] Pecin, D., Pessoa, A., Poggi, M., & Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing, 22
Mathematical Programming Computation, 9(1), 61-100. https://doi.org/10.1007/s12532-016-0108-8
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Comparison with literature

N
[1]: Our work:

Setting - Continuous time and charge

Continuous time and charge

- Single / multiple recharges,  + Multiple recharges,
partial / full recharging partial recharging
»  Time windows - No time windows
- No charging costs - Linear constant / heterogenous

charging costs
(charging T at [ costs 0; * T)

[1] Desaulniers, G., Errico, F, Irnich, S., & Schneider, M. (2016). Exact Algorithms for Electric Vehicle-Routing Problems with 23
Time Windows. Operations Research, 64(6), 1388—1405. https://doi.org/10.1287/0pre.2016.1535 )



Comparison with literature
S

[1]: Our work:
Methods - Bidirectional label-setting, «  Unidirectional, two-level
with bidirectional criteria label-setting, with

bidirectional criteria

- ng-route relaxation - Adaptive tightening of
ng-route relaxations

- 2-path cuts and - SRC and Im-SRC

subset-row cuts

- Branching - No branching

[1] Desaulniers, G., Errico, F, Irnich, S., & Schneider, M. (2016). Exact Algorithms for Electric Vehicle-Routing Problems with 24
Time Windows. Operations Research, 64(6), 1388—1405. https://doi.org/10.1287/0pre.2016.1535



