Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvalue Disjunctions

Dimitris Bertsimas, Ryan Cory-Wright, Sean Lo, Jean Pauphilet.

website: https://sean-lo.github.io, paper: https://tinyurl.com/olrmc2023, code: https://github.com/sean-lo/OptimalMatrixCompletion.jl Operations Research Center, Massachusetts Institute of Technology

Problem Setting

Find low-rank \boldsymbol{X} that approx. fits observed entries \mathcal{I} in noisy data \boldsymbol{A} :

$$
\begin{align*}
& \min _{\boldsymbol{X} \in \mathbb{R}^{n \times m}} \frac{1}{2} \sum_{(i, j) \in \mathcal{I}}\left(X_{i, j}-A_{i, j}\right)^{2}+\frac{1}{2 \gamma}\|\boldsymbol{X}\|_{F}^{2} \quad \text { s.t. } \operatorname{Rank}(\boldsymbol{X}) \leq k \tag{1}\\
& \text { Noiseless: } \min _{\boldsymbol{X} \in \mathbb{R}^{n \times m}}\|\boldsymbol{X}\|_{F}^{2} \quad \text { s.t. } X_{i, j}=A_{i, j} \forall(i, j) \in \mathcal{I}, \operatorname{Rank}(\boldsymbol{X}) \leq k
\end{align*}
$$

Summary of Contributions

1. Branch-and-bound by eigenvector disjunctions
2. Tighter semidefinite inequalities via determinant minors
3. Restricted alternating minimization at each node
\Rightarrow Solves (nonconvex) low-rank problem to global optimality

Matrix Perspective Reformulation Technique

Reformulate (1) exactly as [c.f. 2]:

$$
\begin{align*}
& \min _{\boldsymbol{Y} \in \mathcal{Y}_{n}^{k}} \min _{\substack{\boldsymbol{X} \in \mathbb{R}^{n \times m} \\
\boldsymbol{\Theta} \in \mathcal{S}^{m}}} \frac{1}{2} \sum_{(i, j) \in \mathcal{I}}\left(X_{i, j}-A_{i, j}\right)^{2}+\frac{1}{2 \gamma} \operatorname{tr}(\boldsymbol{\Theta}) \tag{2}\\
& \text { s.t. }\left(\begin{array}{cc}
\boldsymbol{Y} & \boldsymbol{X} \\
\boldsymbol{X}^{\top} & \boldsymbol{\Theta}
\end{array}\right) \succeq \mathbf{0}
\end{align*}
$$

\Rightarrow Isolates nonconvexity of $\operatorname{Rank}(\boldsymbol{X}) \leq k$ in set of rank- k projections \mathcal{Y}_{n}^{k} \triangleright Relaxing to $\boldsymbol{Y} \in \operatorname{Conv}\left(\mathcal{Y}_{n}^{k}\right)=\{\mathbf{0} \preceq \boldsymbol{Y} \preceq \mathbb{I}, \operatorname{tr}(\boldsymbol{Y}) \leq k\}$ gives a SDP!

1. Eigenvector Disjunctions

Introduce $\boldsymbol{U} \in \mathbb{R}^{n \times k}$, and relax $\boldsymbol{Y}=\boldsymbol{U} \boldsymbol{U}^{\top}$ to $\boldsymbol{Y} \succeq \boldsymbol{U} \boldsymbol{U}^{\top}$:

$$
\begin{aligned}
\min _{\boldsymbol{Y} \in \operatorname{Conv}\left(\mathcal{Y}_{n}^{k}\right)}^{\boldsymbol{U} \in \mathbb{R}^{n \times k}} & \min _{\substack{\boldsymbol{X} \in \mathbb{R}^{n \times m} \\
\boldsymbol{\Theta} \in \mathcal{S}^{m}}} \frac{1}{2} \sum_{(i, j) \in \mathcal{I}}\left(X_{i, j}-A_{i, j}\right)^{2}+\frac{1}{2 \gamma} \operatorname{tr}(\boldsymbol{\Theta}) \\
& \text { s.t. }\left(\begin{array}{cc}
\boldsymbol{Y} & \boldsymbol{X} \\
\boldsymbol{X}^{\top} & \boldsymbol{\Theta}
\end{array}\right) \succeq \mathbf{0}, \boldsymbol{Y} \succeq \boldsymbol{U} \boldsymbol{U}^{\top}
\end{aligned}
$$

- If solution $(\hat{\boldsymbol{Y}}, \hat{\boldsymbol{U}})$ has $\hat{\boldsymbol{Y}} \preceq \hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^{\top}$, done!
\Rightarrow Else, there is eigenvector \boldsymbol{x} such that $\boldsymbol{x}^{\top}\left(\hat{\boldsymbol{Y}}-\hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^{\top}\right) \boldsymbol{x}>0$. Cut:

$$
\begin{equation*}
\boldsymbol{x}^{\top} \boldsymbol{Y} \boldsymbol{x} \leq \boldsymbol{x}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}=\left\|\boldsymbol{U}^{\top} \boldsymbol{x}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

- $k=1$: Following [6], linearize $u \mapsto u^{2}$ on [$-1,1$] as below:

$$
u^{2} \leq \begin{cases}f_{L}\left(u ; u_{0}\right):=-u+u u_{0}+u_{0} & \text { if } u \in\left[-1, u_{0}\right] \\ f_{R}\left(u ; u_{0}\right):=u+u u_{0}-u_{0} & \text { if } u \in\left(u_{0}, 1\right]\end{cases}
$$

and set $u_{0}=\hat{\boldsymbol{U}}^{\top} \boldsymbol{x}, u=\boldsymbol{U}^{\top} \boldsymbol{x}$.
> $k>1$: Yields 2^{k} disjunctive regions:

$$
\bigvee_{L \subseteq[k]}\left\{(\boldsymbol{U}, \boldsymbol{Y}) \left\lvert\, \begin{array}{ll}
\boldsymbol{U}_{j}^{\top} \boldsymbol{x} \in\left[-1, \hat{\boldsymbol{U}}_{j}^{\top} \boldsymbol{x}\right] & \forall j \in L, \tag{5}\\
\boldsymbol{U}_{j}^{\top} \boldsymbol{x} \in\left(\hat{\boldsymbol{U}}_{j}^{\top} \boldsymbol{x}, 1\right] & \forall j \in[k] \backslash L, \\
\boldsymbol{x}^{\top} \boldsymbol{Y} \boldsymbol{x} \leq \sum_{j \in L} f_{L}\left(\boldsymbol{U}_{j}^{\top} \boldsymbol{x} ; \hat{\boldsymbol{U}}_{j}^{\top} \boldsymbol{x}\right) & +\sum_{j \in[k] \backslash L} f_{R}\left(\boldsymbol{U}_{j}^{\top} \boldsymbol{x} ; \hat{\boldsymbol{U}}_{j}^{\top} \boldsymbol{x}\right)
\end{array}\right.\right\}
$$

Note: different approximations \rightarrow different branching factor!
$\wedge^{2^{k} \text { regions }}$

2. Tight SDP Inequalities via Determinant Minors

In rank-1 matrices, each 2-by-2 minor has determinant 0 . Taking the moment matrix of $\left(1 X_{i_{1}, j_{1}} X_{i_{1}, j_{2}} X_{i_{2}, j_{1}} X_{i_{2}, j_{2}}\right)$ gives:
 \Rightarrow Let $W_{i, j}$ model $X_{i, j}^{2}$ in objective and constraints;

- Link $\Theta_{i, j}$ (which models $\sum_{l} X_{i, l} X_{j, l}$) to appropriate W and V terms:

$$
\Theta_{j_{1}, j_{2}}=\sum_{i \in[n]} V_{\left.i, j_{1}, j_{2}\right)}^{1}, \quad \forall j_{1}<j_{2} \in[m], \quad \Theta_{j, j}=\sum_{i \in[n]} W_{i, j}, \quad \forall j \in[m] .
$$

\Rightarrow Extend to rank $k>1$ by modelling \boldsymbol{X} as sum of rank-1 slices $\sum_{t \in[k]} \boldsymbol{X}^{t}$: Requires Shor relaxation on the moment matrix of $\left(1 X_{i, j}^{1} X_{i, j}^{2} \ldots X_{i, j}^{k}\right)$ New terms $H_{i, j}^{t_{1}, t_{2}}$ modelling $X_{i, j}^{t_{1}} X_{i, j}^{t_{2}}$
Key insight: modelling some minors \rightarrow cutting planes for (3)

3. Alternating Minimization

Following [3], express $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{V}$, iterate until local minima reached

- Improvement: compute high-quality solutions at child nodes [e.g., in 4]

Restrict \boldsymbol{U} in feasible region of child node: linear constraints, and SOC approximation of $\boldsymbol{U}^{\top} \boldsymbol{U} \preceq \mathbb{I}$ [c.f. 1]
Randomly initiate altmin, with probability decaying with tree depth.

$$
\begin{array}{|}
\min _{\boldsymbol{V} \in \mathbb{R}^{k \times m}} \frac{1}{2} \sum_{(i, j) \in \mathcal{I}}\left(\left(\boldsymbol{U}^{*} \boldsymbol{V}\right)_{i, j}-A_{i, j}\right)^{2}+\frac{1}{2 \gamma}\left\|\boldsymbol{U}^{*} \boldsymbol{V}\right\|_{F}^{2} \\
\min _{\boldsymbol{U} \in \mathbb{R}^{n \times k}} \frac{1}{2} \sum_{(i, j) \in \mathcal{I}}\left(\left(\boldsymbol{U} \boldsymbol{V}^{*}\right)_{i, j}-A_{i, j}\right)^{2}+\frac{1}{2 \gamma}\left\|\boldsymbol{U} \boldsymbol{V}^{*}\right\|_{F}^{2} \\
\text { s.t. linear constraints on } \boldsymbol{U} \text { from disjunctions } \\
\left\|\boldsymbol{U}_{i}\right\|_{2}^{2} \leq 1, \quad \forall i \in[k] \\
\left.\left\|\boldsymbol{U}_{i} \pm \boldsymbol{U}_{j}\right\|_{2}^{2} \leq 2, \quad \forall i, j \in[k]\right\} \text { soc approx. of } \\
\boldsymbol{U}^{\top} \boldsymbol{U} \preceq \mathbb{I}
\end{array}
$$

Computational Experiments: Root Node Relaxations

- Imposing some Shor SDP constraints provide tradeoff between relaxation strength and solve time!

Figure: Root node relative gap (left) and time taken (right) at the root node for rank-1 matrix completion with $2 k n \log _{10}(n)$ filled entries, with low regularization ($\gamma=80.0$).

Computational Experiments: Scalability and Accuracy

\Rightarrow As n increases, SDP relaxations are tighter but take longer to solve!

Figure: Relative optimality gap for rank-1 (left) and rank-2 (right) matrix completion with $p k n \log _{10}(n)$ filled entries, with low regularization $(\gamma=80.0)$.
$>$ Outperforms B-M at root node and MFSGD [5] in terms of MSE

Figure: (Absolute) MSE improvement against alternating minimization at the the root node (left) and MatrixFactorization() (right) for rank- k matrix completion with $2 k n \log _{10}(n)$ filled entries, with low regularization $(\gamma=80.0)$.

Bibliography

[^0]
[^0]: Alper
 (2019).
 Dimitris Bertsimas, Ryan Cory-Wright, and Jean Pauphilet. "A new perspective on low-rank optimization". In: Mathematical Programming (2023), pp. 1-46.
 Samuel Burer and Renato DC Monteiro. "Local minima and convergence in low-rank semidefinite programming". In: Math-
 ematical Programming 103.3 (2005), pp. 427-444.
 Emilie Danna, Edward Rothberg, and Claude Le Pape. "Exploring relaxation induced neighborhoods to improve MIP solutions". In: Mathematical Programming 102.1 (2005), pp. 71-90.
 Chi Jin, Sham M Kakade, and Praneeth Netrapalli. "Provable efficient online matrix completion via non-convex stochastic gradient descent". In: Advances in Neural Information Processing Systems 29 (2016).
 Anureet Saxena, Pierre Bonami, and Jon Lee. "Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations". In: Mathematical Programming 130.2 (2011), pp. 359-413.

