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Problem Setting

Find low-rank X that approx. fits observed entries Z in noisy data A:
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Summary of Contributions

1. Branch-and-bound by eigenvector disjunctions

2. Tighter semidefinite inequalities via determinant minors
3. Restricted alternating minimization at each node

— Solves (nonconvex) low-rank problem to global optimality

Matrix Perspective Reformulation Technique

Reformulate (1) exactly as [c.f. 2]:
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Isolates nonconvexity of Rank (X') < k in set of rank-k projections y/;f
Relaxing to Y € Conv(Y%) ={0 <Y < I, tr(Y) < k} gives a SDP!

1. Eigenvector Disjunctions

Introduce U € R”Xk, andrelaxY =UU ' toY = UU ":
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If solution (Y, U) hasY < UU ", done!
Else, there is eigenvector @ such that ' (Y — UU ")z > 0. Cut:
v Ye<z'UU'z= HUTCBH% (4)

k = 1: Following [6], linearize u — u” on [—1, 1] as below:
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k > 1: Yields 2" disjunctive regions:
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Note: different approximations — different branching factor!
4% regions
Up:0 1 —Uo

3¥ regions

2F regions
U

2. Tight SDP Inequalities via Determinant Minors

In rank-1 matrices, each 2-by-2 minor has determinant 0. Taking the
moment matrix of (1 Xit1 51 Xit.go Xig.jq Xi27j2) gives:
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Let W; ; model XZZ]- in objective and constraints;
Link ©; ; (which models » ;; X; ;X ) to appropriate W and V' terms:

Ojjs = Vi Yi<i€lml, ©;=Y Wy Vjem
i€[n] i€[n]

Extend to rank k£ > 1 by modelling X as sum of rank-1 slices Zte[k] Xt

Requires Shor relaxation on the moment matrix of (1 X},j Xl%j . ij)
New terms Hflj’t? modelling beXf?

Key insight: modelling some minors — cutting planes for (3)

3. Alternating Minimization

Following [3], express X = UV, iterate until local minima reached
Improvement: compute high-quality solutions at child nodes [e.g., in 4]

Restrict U in feasible region of child node: linear constraints, and SOC
approximation of U 'U < I [c.f. 1]
Randomly initiate altmin, with probability decaying with tree depth.
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Computational Experiments: Root Node Relaxations

Imposing some Shor SDP constraints provide tradeoff between relaxation
strength and solve time!
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Figure: Root node relative gap (left) and time taken (right) at the root node for rank-1
matrix completion with 2kn log,,(n) filled entries, with low regularization (y = 80.0).

Computational Experiments: Scalability and Accuracy

As n increases, SDP relaxations are tighter but take longer to solve!
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Figure: Relative optimality gap for rank-1 (left) and rank-2 (right) matrix completion
with pkn log,y(n) filled entries, with low regularization (v = 80.0).

Outperforms B-M at root node and MFSGD [5] in terms of MSE
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Figure: (Absolute) MSE improvement against alternating minimization at the the root
node (left) and MatrixFactorization() (right) for rank-£ matrix completion with
2knlogy(n) filled entries, with low regularization (v = 80.0).
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