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Problem Setting
Find low-rankX that approx. fits observed entries I in noisy dataA:

min
X∈Rn×m

1

2

∑
(i,j)∈I

(Xi,j − Ai,j)
2 +

1

2γ
∥X∥2F s.t. Rank (X) ≤ k (1)

Noiseless: min
X∈Rn×m

∥X∥2F s.t.Xi,j = Ai,j ∀ (i, j) ∈ I, Rank (X) ≤ k

Summary of Contributions

1. Branch-and-bound by eigenvector disjunctions
2. Tighter semidefinite inequalities via determinant minors
3. Restricted alternating minimization at each node
⇒ Solves (nonconvex) low-rank problem to global optimality

Matrix Perspective Reformulation Technique
Reformulate (1) exactly as [c.f. 2]:

min
Y ∈Yk

n

min
X∈Rn×m

Θ∈Sm

1

2

∑
(i,j)∈I

(Xi,j − Ai,j)
2 +

1

2γ
tr (Θ)

s.t.
(

Y X

X⊤ Θ

)
⪰ 0

(2)

▶ Isolates nonconvexity of Rank (X) ≤ k in set of rank-k projections Yk
n

▶ Relaxing to Y ∈ Conv(Yk
n) = {0 ⪯ Y ⪯ I, tr (Y ) ≤ k} gives a SDP!

1. Eigenvector Disjunctions

Introduce U ∈ Rn×k, and relax Y = UU⊤ to Y ⪰ UU⊤:

min
Y ∈Conv(Yk

n)

U∈Rn×k

min
X∈Rn×m

Θ∈Sm

1

2

∑
(i,j)∈I

(Xi,j − Ai,j)
2 +

1

2γ
tr (Θ)

s.t.
(

Y X

X⊤ Θ

)
⪰ 0, Y ⪰ UU⊤

(3)

▶ If solution (Ŷ , Û ) has Ŷ ⪯ ÛÛ⊤, done!
▶ Else, there is eigenvector x such that x⊤(Ŷ − ÛÛ⊤)x > 0. Cut:

x⊤Y x ≤ x⊤UU⊤x = ∥U⊤x∥22 (4)
▶ k = 1: Following [6], linearize u 7→ u2 on [−1, 1] as below:

u2 ≤

{
fL(u;u0) := −u + uu0 + u0 if u ∈ [−1, u0]

fR(u;u0) := u + uu0 − u0 if u ∈ (u0, 1]

and set u0 = Û⊤x, u = U⊤x.
▶ k > 1: Yields 2k disjunctive regions:

∨
L⊆[k]

 (U ,Y )

∣∣∣∣∣∣∣∣
U⊤

j x ∈ [−1, Û⊤
j x] ∀ j ∈ L,

U⊤
j x ∈ (Û⊤

j x, 1] ∀ j ∈ [k] \ L,
x⊤Y x ≤

∑
j∈L

fL(U
⊤
j x; Û

⊤
j x) +

∑
j∈[k]\L

fR(U
⊤
j x; Û

⊤
j x)

 (5)

Note: different approximations→ different branching factor!

u0

2k regions
u0 −u0

3k regions
u0 0 −u0

4k regions

2. Tight SDP Inequalities via Determinant Minors
In rank-1 matrices, each 2-by-2 minor has determinant 0. Taking the
moment matrix of

(
1 Xi1,j1 Xi1,j2 Xi2,j1 Xi2,j2

)
gives:

det

(
Xi1,j1 Xi1,j2
Xi2,j1 Xi2,j2

)
= 0 =⇒


1 Xi1,j1 Xi1,j2 Xi2,j1 Xi2,j2

Xi1,j1 Wi1,j1 V 1
i1,(j1,j2)

V 2
(i1,i2),j1

V 3
(i1,i2),(j1,j2)

Xi1,j2 V 1
i1,(j1,j2)

Wi1,j2 V 3
(i1,i2),(j1,j2)

V 2
(i1,i2),j2

Xi2,j1 V 2
(i1,i2),j1

V 3
(i1,i2),(j1,j2)

Wi2,j1 V 1
i2,(j1,j2)

Xi2,j2 V 3
(i1,i2),(j1,j2)

V 2
(i1,i2),j2

V 1
i2,(j1,j2)

Wi2,j2

 ⪰ 0

▶ LetWi,j model X2
i,j in objective and constraints;

▶ Link Θi,j (which models
∑

lXi,lXj,l) to appropriateW and V terms:

Θj1,j2 =
∑
i∈[n]

V 1
i,(j1,j2)

, ∀ j1 < j2 ∈ [m], Θj,j =
∑
i∈[n]

Wi,j, ∀ j ∈ [m].

▶ Extend to rank k > 1 by modellingX as sum of rank-1 slices
∑

t∈[k]X
t:

• Requires Shor relaxation on the moment matrix of
(
1 X1

i,j X2
i,j . . . Xk

i,j

)
• New terms H t1,t2

i,j modelling X t1
i,jX

t2
i,j

Key insight: modelling some minors→ cutting planes for (3)

3. Alternating Minimization
Following [3], expressX = UV , iterate until local minima reached
▶ Improvement: compute high-quality solutions at child nodes [e.g., in 4]
▶ Restrict U in feasible region of child node: linear constraints, and SOC

approximation of U⊤U ⪯ I [c.f. 1]
▶ Randomly initiate altmin, with probability decaying with tree depth.

Minimize V given U∗

min
V ∈Rk×m

1

2

∑
(i,j)∈I

(
(U∗V )i,j − Ai,j

)2
+

1

2γ
∥U∗V ∥2F

Minimize U given V ∗

min
U∈Rn×k

1

2

∑
(i,j)∈I

(
(UV ∗)i,j − Ai,j

)2
+

1

2γ
∥UV ∗∥2F

s.t. linear constraints on U from disjunctions

∥Ui∥22 ≤ 1, ∀ i ∈ [k]

∥Ui ±Uj∥22 ≤ 2, ∀ i, j ∈ [k]

}
SOC approx. of

U⊤U ⪯ I

V ∗U∗

Computational Experiments: Root Node Relaxations

▶ Imposing some Shor SDP constraints provide tradeoff between relaxation
strength and solve time!

Figure: Root node relative gap (left) and time taken (right) at the root node for rank-1
matrix completion with 2kn log10(n) filled entries, with low regularization (γ = 80.0).

Computational Experiments: Scalability and Accuracy
▶ As n increases, SDP relaxations are tighter but take longer to solve!

Figure: Relative optimality gap for rank-1 (left) and rank-2 (right) matrix completion
with pkn log10(n) filled entries, with low regularization (γ = 80.0).

▶ Outperforms B-M at root node and MFSGD [5] in terms of MSE

Figure: (Absolute) MSE improvement against alternating minimization at the the root
node (left) and MatrixFactorization() (right) for rank-k matrix completion with
2kn log10(n) filled entries, with low regularization (γ = 80.0).
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